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ABSTRACT

Summary: MicroRNAs (miRNAs) are ∼20- to 22-nt long endogenous
RNA sequences that play a critical role in the regulation of
gene expression in eukaryotic genomes. Confident identification
of miRNA targets is vital to understand their functions. Currently
available computational algorithms for miRNA target prediction have
diverse degrees of sensitivity and specificity and as a consequence
each predicted target generally requires experimental confirmation.
miRNAs and other small RNAs that direct endonucleolytic cleavage
of target mRNAs produce diagnostic uncapped, polyadenylated
mRNA fragments. Degradome sequencing [also known as PARE
(parallel analysis of RNA ends) and GMUCT (genome-wide mapping
of uncapped transcripts)] samples the 5′-ends of uncapped mRNAs
and can be used to discover in vivo miRNA targets independent
of computational predictions. Here, we describe a generalizable
computational pipeline, CleaveLand, for the detection of cleaved
miRNA targets from degradome data. CleaveLand takes as input
degradome sequences, small RNAs and an mRNA database and
outputs small RNA targets. CleaveLand can thus be applied to
degradome data from any species provided a set of mRNA
transcripts and a set of query miRNAs or other small RNAs are
available.
Availability: The code and documentation for CleaveLand is freely
available under a GNU license at http://www.bio.psu.edu/people/
faculty/Axtell/AxtellLab/Software.html
Contact: mja18@psu.edu

1 INTRODUCTION
Small silencing RNAs guide Argonaute (AGO)-containing
complexes to regulate target RNA sequences based upon Watson–
Crick base pairing (Bartel, 2004). Small RNAs are expressed
by most eukaryotes and have key roles in developmental
timing, antiviral defense, genome rearrangement and chromatin
modification. Classes of small silencing RNAs include microRNAs
(miRNAs), short interfering RNAs (siRNAs), trans-acting siRNAs
(tasiRNAs) and Piwi-interacting RNAs (piRNAs). miRNAs are 20-
to 22-nt long and are derived from the stem-loop structures of
folded precursor RNA sequences and are particularly critical for
gene regulation in plants and animals.
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In contrast to animals, plant miRNAs tend to have perfect
or near perfect complementarity to their target mRNAs and
the mode of regulation typically involves AGO-catalyzed target
cleavage. Current in silico miRNA-target prediction methods in
plants generally search for mRNAs with perfect or near perfect
complementarity to a mature miRNA (reviewed by Mallory and
Bouche, 2008), and have been of enormous value in guiding
experimentation. However, these predictions require experimental
confirmation to eliminate false positives, and may in some cases
also miss some bona fide targets (false negatives).

Experimental studies have shown that small RNA-guided, AGO-
mediated cleavage of mRNA targets occurs exactly between the
10th and 11th nucleotide of complementarity relative to the small
RNA 5′-end. The resulting upstream fragment of the cleaved target
rapidly degrades, while the downstream fragment is stable in vivo
(Llave et al., 2002). Deep sequencing of the 5′-ends of uncapped,
polyadenylated mRNAs thus captures these downstream cleavage
fragments (Addo-Quaye et al., 2008; German et al., 2008; Gregory
et al., 2008). This technique has been referred to as PARE (parallel
analysis of RNA ends) (German et al., 2008) and GMUCT (genome-
wide mapping of uncapped transcripts) (Gregory et al., 2008), but
for simplicity, we shall refer to it as degradome sequencing herein.
Degradome data can be scrutinized to find evidence of cleaved small
RNA targets without resorting to computational predictions. Here
we describe CleaveLand, a general pipeline for detecting fragments
diagnostic of small RNA-mediated cleavage from degradome
sequencing experiments. CleaveLand is not limited in applicability
to plant miRNAs: coupled with degradome sequencing, CleaveLand
will find cleaved small RNA targets from any organism.

2 METHODS

2.1 Formulation
If a decapped mRNA is the consequence of small RNA-mediated cleavage,
then its 5′-end must contain the first 10 nt of the small RNA complementary
region. This is because AGO-mediated cleavage occurs between the 10th and
11th nucleotide of complementarity. Hence, mapping the 5′-ends of uncapped
mRNAs to the relevant transcriptome and extending 13 nt upstream captures
the entire region of potential complementarity. Aligning these extended
sequences to a set of small RNA queries allows discovery of cleaved
targets. Subsequent quality filters and signal-to-noise analyses then assess
the confidence with which targets have been identified.
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CleaveLand to find cleaved small RNA targets

Fig. 1. A schematic description of the CleaveLand pipeline.

2.2 Input data
The pipeline requires three FASTA-formatted input datasets: degradome
sequences (sequences are trimmed to the 5′-most 20 nts), a set of query
small RNAs and a target database (typically mRNAs). An optional fourth
input is a FASTA file containing any known structural RNAs (e.g. rRNAs)
for which matching degradome tags should be ignored. FASTA headers for
the degradome and small RNA files require special formatting as described
in the software documentation.

2.3 Processing
Figure 1 shows the various stages of the pipeline. Degradome sequences
are matched to the structural RNAs using the Oligomap short reads aligner
(Berninger et al., 2008). Raw sequence counts for degradome sequences
are scaled to ‘reads per million’ (RPM) to enable comparisons across
different sized datasets. All degradome sequences with exact sense matches
to the structural RNAs are removed and the filtered dataset is mapped to
the transcriptome, again using Oligomap. The RPM abundances of any
degradome sequences with multiple transcriptome hits are repeat normalized;
the abundance is divided by the total number of hits to give ‘normalized
reads per million’ (NRPM). For each exact match to the sense strand of an
mRNA transcript, a 26-nt long ‘query’ mRNA subsequence is generated by
extracting 13-nt long sequences upstream and downstream of the location
of the 5′-end of the matching degradome sequence. All query sequences
are aligned to each small RNA sequence using the Needle program in the
EMBOSS package (Rice et al., 2000). Alignments are then scored according
to a previously described scheme developed for plant miRNA/target pairings
(Allen et al., 2005). All alignments with scores not exceeding the user-
set threshold and having the 5′-end of the degradome sequence coincident
with the 10th nucleotide of complementarity to the small RNA are retained.
Most of the degradome is not the result of small RNA-mediated cleavage.
Thus, to differentiate spurious results from real targets, the pipeline re-runs
using randomly shuffled small RNA sequences to estimate signal-to-noise
ratios; shuffled sequences have dinucleotide and trinucleotide compositions
consistent with those of the input transcriptome. All hits are categorized
based on the abundance of the diagnostic cleavage tag relative to the
overall profile of degradome tags matching the target. Optionally, users
may limit the search to the highest confidence (‘Category I’) targets where
the cleavage tag is the most abundant degradome sequence matching the
target.

Fig. 2. Sample output from CleaveLand.

2.4 Output
The pipeline generates a list of all confidently detected mRNA targets
along with the corresponding alignments for the small RNA–mRNA
pairs (Figure 2). In addition, complete information on the degradome profile
of each target mRNAand signal-to-noise information is provided. Optionally,
complete degradome mapping data, independent of small RNA alignments,
are also produced.

3 IMPLEMENTATION
The pipeline programs were written in C and run on a linux machine
with a 3.0 GHz processor and 4 GB RAM. The pipeline requires the
installation of the EMBOSS package and the Oligomap program.
Considering a single query small RNA with 10 shuffles, a typical
runtime for processing ∼1 million degradome sequences is about
1 h. A web interface to CleaveLand will soon be made available via
Galaxy (galaxy.psu.edu) (Giardine et al., 2005).
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